CamGear API References
CamGear API usage examples can be found here ➶
CamGear API parameters are explained here ➶
CamGear supports a diverse range of video streams which can handle/control video stream almost any IP/USB Cameras, multimedia video file format (upto 4k tested), any network stream URL such as http(s), rtp, rtsp, rtmp, mms, etc. It also supports Gstreamer's RAW pipelines.
CamGear API provides a flexible, high-level multi-threaded wrapper around OpenCV's VideoCapture API with direct access to almost all of its available parameters. It relies on Threaded Queue mode for threaded, error-free and synchronized frame handling.
CamGear internally implements yt_dlp
backend class for seamlessly pipelining live video-frames and metadata from various streaming services like YouTube, Dailymotion, Twitch, and many more ➶
Source code in vidgear/gears/camgear.py
class CamGear:
"""
CamGear supports a diverse range of video streams which can handle/control video stream almost any IP/USB Cameras, multimedia video file format (upto 4k tested),
any network stream URL such as http(s), rtp, rtsp, rtmp, mms, etc. It also supports Gstreamer's RAW pipelines.
CamGear API provides a flexible, high-level multi-threaded wrapper around OpenCV's VideoCapture API with direct access to almost all of its available parameters.
It relies on Threaded Queue mode for threaded, error-free and synchronized frame handling.
CamGear internally implements `yt_dlp` backend class for seamlessly pipelining live video-frames and metadata from various streaming services like YouTube, Dailymotion,
Twitch, and [many more ➶](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md#supported-sites)
"""
def __init__(
self,
source=0,
stream_mode=False,
backend=0,
colorspace=None,
logging=False,
time_delay=0,
**options
):
"""
This constructor method initializes the object state and attributes of the CamGear class.
Parameters:
source (based on input): defines the source for the input stream.
stream_mode (bool): controls the exclusive **Stream Mode** for handling streaming URLs.
backend (int): selects the backend for OpenCV's VideoCapture class.
colorspace (str): selects the colorspace of the input stream.
logging (bool): enables/disables logging.
time_delay (int): time delay (in sec) before start reading the frames.
options (dict): provides ability to alter Source Tweak Parameters.
"""
# enable logging if specified
self.__logging = logging if isinstance(logging, bool) else False
# print current version
logcurr_vidgear_ver(logging=self.__logging)
# initialize global
self.ytv_metadata = {}
# check if Stream-Mode is ON (True)
if stream_mode:
# TODO: check GStreamer backend support
# gst_support = check_gstreamer_support(logging=self.__logging)
# handle special Stream Mode parameters
stream_resolution = get_supported_resolution(
options.pop("STREAM_RESOLUTION", "best"), logging=self.__logging
)
# handle Stream-Mode
if not (yt_dlp is None):
# extract user-defined params
yt_stream_params = options.pop("STREAM_PARAMS", {})
if isinstance(yt_stream_params, dict):
yt_stream_params = {
str(k).strip(): v for k, v in yt_stream_params.items()
}
else:
yt_stream_params = {}
try:
# Validate source for Yt_dlp backend
logger.info(
"Verifying Streaming URL using yt-dlp backend. Please wait..."
)
# initialize YT_backend
ytbackend = YT_backend(
source_url=source, logging=self.__logging, **yt_stream_params
)
if ytbackend:
# save video metadata
self.ytv_metadata = ytbackend.meta_data
# handle live-streams
# Throw warning for livestreams
ytbackend.is_livestream and logger.warning(
"Livestream URL detected. It is strongly recommended to use the GStreamer backend (`backend=cv2.CAP_GSTREAMER`) with these URLs."
)
# check whether stream-resolution was specified and available
if not (stream_resolution in ytbackend.streams.keys()):
logger.warning(
"Specified stream-resolution `{}` is not available. Reverting to `best`!".format(
stream_resolution
)
)
# revert to best
stream_resolution = "best"
else:
self.__logging and logger.debug(
"Using `{}` resolution for streaming.".format(
stream_resolution
)
)
# extract stream URL as source using stream-resolution
source = ytbackend.streams[stream_resolution]
# log progress
self.__logging and logger.debug(
"YouTube source ID: `{}`, Title: `{}`, Quality: `{}`".format(
self.ytv_metadata["id"],
self.ytv_metadata["title"],
stream_resolution,
)
)
except Exception as e:
# raise error if something went wrong
raise ValueError(
"[CamGear:ERROR] :: Stream Mode is enabled but Input URL is invalid!"
)
else:
# raise import errors
import_dependency_safe("yt_dlp")
# assigns special parameter to global variable and clear
# Threaded Queue Mode
self.__threaded_queue_mode = options.pop("THREADED_QUEUE_MODE", True)
if not isinstance(self.__threaded_queue_mode, bool):
# reset improper values
self.__threaded_queue_mode = True
# Thread Timeout
self.__thread_timeout = options.pop("THREAD_TIMEOUT", None)
if self.__thread_timeout and isinstance(self.__thread_timeout, (int, float)):
# set values
self.__thread_timeout = float(self.__thread_timeout)
else:
# defaults to 5mins timeout
self.__thread_timeout = None
self.__queue = None
# initialize queue for video files only
if self.__threaded_queue_mode and isinstance(source, str):
# define queue and assign it to global var
self.__queue = queue.Queue(maxsize=96) # max bufferlen 96 to check overflow
# log it
self.__logging and logger.debug(
"Enabling Threaded Queue Mode for the current video source!"
)
else:
# otherwise disable it
self.__threaded_queue_mode = False
# log it
self.__logging and logger.warning(
"Threaded Queue Mode is disabled for the current video source!"
)
self.__thread_timeout and logger.info(
"Setting Video-Thread Timeout to {}s.".format(self.__thread_timeout)
)
# stream variable initialization
self.stream = None
if backend and isinstance(backend, int):
# add backend if specified and initialize the camera stream
if check_CV_version() == 3:
# Different OpenCV 3.4.x statement
self.stream = cv2.VideoCapture(source + backend)
else:
# Two parameters are available since OpenCV 4+ (master branch)
self.stream = cv2.VideoCapture(source, backend)
logger.info("Setting backend `{}` for this source.".format(backend))
else:
# initialize the camera stream
self.stream = cv2.VideoCapture(source)
# initializing colorspace variable
self.color_space = None
# apply attributes to source if specified
options = {str(k).strip(): v for k, v in options.items()}
for key, value in options.items():
property = capPropId(key)
not (property is None) and self.stream.set(property, value)
# handle colorspace value
if not (colorspace is None):
self.color_space = capPropId(colorspace.strip())
self.__logging and not (self.color_space is None) and logger.debug(
"Enabling `{}` colorspace for this video stream!".format(
colorspace.strip()
)
)
# initialize and assign frame-rate variable
self.framerate = 0.0
_fps = self.stream.get(cv2.CAP_PROP_FPS)
if _fps > 1.0:
self.framerate = _fps
# applying time delay to warm-up webcam only if specified
time_delay and isinstance(time_delay, (int, float)) and time.sleep(time_delay)
# frame variable initialization
(grabbed, self.frame) = self.stream.read()
# check if valid stream
if grabbed:
# render colorspace if defined
if not (self.color_space is None):
self.frame = cv2.cvtColor(self.frame, self.color_space)
# initialize and append to queue
self.__threaded_queue_mode and self.__queue.put(self.frame)
else:
raise RuntimeError(
"[CamGear:ERROR] :: Source is invalid, CamGear failed to initialize stream on this source!"
)
# thread initialization
self.__thread = None
# initialize termination flag event
self.__terminate = Event()
# initialize stream read flag event
self.__stream_read = Event()
def start(self):
"""
Launches the internal *Threaded Frames Extractor* daemon.
**Returns:** A reference to the CamGear class object.
"""
self.__thread = Thread(target=self.__update, name="CamGear", args=())
self.__thread.daemon = True
self.__thread.start()
return self
def __update(self):
"""
A **Threaded Frames Extractor**, that keep iterating frames from OpenCV's VideoCapture API to a internal monitored queue,
until the thread is terminated, or frames runs out.
"""
# keep iterating infinitely
# until the thread is terminated
# or frames runs out
# if the thread indicator variable is set, stop the thread
while not self.__terminate.is_set():
# stream not read yet
self.__stream_read.clear()
# otherwise, read the next frame from the stream
(grabbed, frame) = self.stream.read()
# stream read completed
self.__stream_read.set()
# check for valid frame if received
if not grabbed:
# no frames received, then safely exit
if self.__threaded_queue_mode:
if self.__queue.empty():
break
else:
continue
else:
break
# apply colorspace to frames if valid
if not (self.color_space is None):
# apply colorspace to frames
color_frame = None
try:
color_frame = cv2.cvtColor(frame, self.color_space)
except Exception as e:
# Catch if any error occurred
color_frame = None
self.color_space = None
self.__logging and logger.exception(str(e))
logger.warning("Assigned colorspace value is invalid. Discarding!")
self.frame = color_frame if not (color_frame is None) else frame
else:
self.frame = frame
# append to queue
self.__threaded_queue_mode and self.__queue.put(self.frame)
# signal queue we're done
self.__threaded_queue_mode and self.__queue.put(None)
self.__threaded_queue_mode = False
# indicate immediate termination
self.__terminate.set()
self.__stream_read.set()
# release resources
self.stream.release()
def read(self):
"""
Extracts frames synchronously from monitored queue, while maintaining a fixed-length frame buffer in the memory,
and blocks the thread if the queue is full.
**Returns:** A n-dimensional numpy array.
"""
while self.__threaded_queue_mode and not self.__terminate.is_set():
return self.__queue.get(timeout=self.__thread_timeout)
# return current frame
# only after stream is read
return (
self.frame
if not self.__terminate.is_set() # check if already terminated
and self.__stream_read.wait(timeout=self.__thread_timeout) # wait for it
else None
)
def stop(self):
"""
Safely terminates the thread, and release the multi-threaded resources.
"""
self.__logging and logger.debug("Terminating processes.")
# terminate Threaded queue mode separately
self.__threaded_queue_mode = False
# indicate that the thread
# should be terminated immediately
self.__stream_read.set()
self.__terminate.set()
# wait until stream resources are released (producer thread might be still grabbing frame)
if self.__thread is not None:
if not (self.__queue is None):
while not self.__queue.empty():
try:
self.__queue.get_nowait()
except queue.Empty:
continue
self.__queue.task_done()
self.__thread.join()
__init__(self, source=0, stream_mode=False, backend=0, colorspace=None, logging=False, time_delay=0, **options)
special
¶
This constructor method initializes the object state and attributes of the CamGear class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source | based on input | defines the source for the input stream. | 0 |
stream_mode | bool | controls the exclusive Stream Mode for handling streaming URLs. | False |
backend | int | selects the backend for OpenCV's VideoCapture class. | 0 |
colorspace | str | selects the colorspace of the input stream. | None |
logging | bool | enables/disables logging. | False |
time_delay | int | time delay (in sec) before start reading the frames. | 0 |
options | dict | provides ability to alter Source Tweak Parameters. | {} |
Source code in vidgear/gears/camgear.py
def __init__(
self,
source=0,
stream_mode=False,
backend=0,
colorspace=None,
logging=False,
time_delay=0,
**options
):
"""
This constructor method initializes the object state and attributes of the CamGear class.
Parameters:
source (based on input): defines the source for the input stream.
stream_mode (bool): controls the exclusive **Stream Mode** for handling streaming URLs.
backend (int): selects the backend for OpenCV's VideoCapture class.
colorspace (str): selects the colorspace of the input stream.
logging (bool): enables/disables logging.
time_delay (int): time delay (in sec) before start reading the frames.
options (dict): provides ability to alter Source Tweak Parameters.
"""
# enable logging if specified
self.__logging = logging if isinstance(logging, bool) else False
# print current version
logcurr_vidgear_ver(logging=self.__logging)
# initialize global
self.ytv_metadata = {}
# check if Stream-Mode is ON (True)
if stream_mode:
# TODO: check GStreamer backend support
# gst_support = check_gstreamer_support(logging=self.__logging)
# handle special Stream Mode parameters
stream_resolution = get_supported_resolution(
options.pop("STREAM_RESOLUTION", "best"), logging=self.__logging
)
# handle Stream-Mode
if not (yt_dlp is None):
# extract user-defined params
yt_stream_params = options.pop("STREAM_PARAMS", {})
if isinstance(yt_stream_params, dict):
yt_stream_params = {
str(k).strip(): v for k, v in yt_stream_params.items()
}
else:
yt_stream_params = {}
try:
# Validate source for Yt_dlp backend
logger.info(
"Verifying Streaming URL using yt-dlp backend. Please wait..."
)
# initialize YT_backend
ytbackend = YT_backend(
source_url=source, logging=self.__logging, **yt_stream_params
)
if ytbackend:
# save video metadata
self.ytv_metadata = ytbackend.meta_data
# handle live-streams
# Throw warning for livestreams
ytbackend.is_livestream and logger.warning(
"Livestream URL detected. It is strongly recommended to use the GStreamer backend (`backend=cv2.CAP_GSTREAMER`) with these URLs."
)
# check whether stream-resolution was specified and available
if not (stream_resolution in ytbackend.streams.keys()):
logger.warning(
"Specified stream-resolution `{}` is not available. Reverting to `best`!".format(
stream_resolution
)
)
# revert to best
stream_resolution = "best"
else:
self.__logging and logger.debug(
"Using `{}` resolution for streaming.".format(
stream_resolution
)
)
# extract stream URL as source using stream-resolution
source = ytbackend.streams[stream_resolution]
# log progress
self.__logging and logger.debug(
"YouTube source ID: `{}`, Title: `{}`, Quality: `{}`".format(
self.ytv_metadata["id"],
self.ytv_metadata["title"],
stream_resolution,
)
)
except Exception as e:
# raise error if something went wrong
raise ValueError(
"[CamGear:ERROR] :: Stream Mode is enabled but Input URL is invalid!"
)
else:
# raise import errors
import_dependency_safe("yt_dlp")
# assigns special parameter to global variable and clear
# Threaded Queue Mode
self.__threaded_queue_mode = options.pop("THREADED_QUEUE_MODE", True)
if not isinstance(self.__threaded_queue_mode, bool):
# reset improper values
self.__threaded_queue_mode = True
# Thread Timeout
self.__thread_timeout = options.pop("THREAD_TIMEOUT", None)
if self.__thread_timeout and isinstance(self.__thread_timeout, (int, float)):
# set values
self.__thread_timeout = float(self.__thread_timeout)
else:
# defaults to 5mins timeout
self.__thread_timeout = None
self.__queue = None
# initialize queue for video files only
if self.__threaded_queue_mode and isinstance(source, str):
# define queue and assign it to global var
self.__queue = queue.Queue(maxsize=96) # max bufferlen 96 to check overflow
# log it
self.__logging and logger.debug(
"Enabling Threaded Queue Mode for the current video source!"
)
else:
# otherwise disable it
self.__threaded_queue_mode = False
# log it
self.__logging and logger.warning(
"Threaded Queue Mode is disabled for the current video source!"
)
self.__thread_timeout and logger.info(
"Setting Video-Thread Timeout to {}s.".format(self.__thread_timeout)
)
# stream variable initialization
self.stream = None
if backend and isinstance(backend, int):
# add backend if specified and initialize the camera stream
if check_CV_version() == 3:
# Different OpenCV 3.4.x statement
self.stream = cv2.VideoCapture(source + backend)
else:
# Two parameters are available since OpenCV 4+ (master branch)
self.stream = cv2.VideoCapture(source, backend)
logger.info("Setting backend `{}` for this source.".format(backend))
else:
# initialize the camera stream
self.stream = cv2.VideoCapture(source)
# initializing colorspace variable
self.color_space = None
# apply attributes to source if specified
options = {str(k).strip(): v for k, v in options.items()}
for key, value in options.items():
property = capPropId(key)
not (property is None) and self.stream.set(property, value)
# handle colorspace value
if not (colorspace is None):
self.color_space = capPropId(colorspace.strip())
self.__logging and not (self.color_space is None) and logger.debug(
"Enabling `{}` colorspace for this video stream!".format(
colorspace.strip()
)
)
# initialize and assign frame-rate variable
self.framerate = 0.0
_fps = self.stream.get(cv2.CAP_PROP_FPS)
if _fps > 1.0:
self.framerate = _fps
# applying time delay to warm-up webcam only if specified
time_delay and isinstance(time_delay, (int, float)) and time.sleep(time_delay)
# frame variable initialization
(grabbed, self.frame) = self.stream.read()
# check if valid stream
if grabbed:
# render colorspace if defined
if not (self.color_space is None):
self.frame = cv2.cvtColor(self.frame, self.color_space)
# initialize and append to queue
self.__threaded_queue_mode and self.__queue.put(self.frame)
else:
raise RuntimeError(
"[CamGear:ERROR] :: Source is invalid, CamGear failed to initialize stream on this source!"
)
# thread initialization
self.__thread = None
# initialize termination flag event
self.__terminate = Event()
# initialize stream read flag event
self.__stream_read = Event()
read(self)
¶
Extracts frames synchronously from monitored queue, while maintaining a fixed-length frame buffer in the memory, and blocks the thread if the queue is full.
Returns: A n-dimensional numpy array.
Source code in vidgear/gears/camgear.py
def read(self):
"""
Extracts frames synchronously from monitored queue, while maintaining a fixed-length frame buffer in the memory,
and blocks the thread if the queue is full.
**Returns:** A n-dimensional numpy array.
"""
while self.__threaded_queue_mode and not self.__terminate.is_set():
return self.__queue.get(timeout=self.__thread_timeout)
# return current frame
# only after stream is read
return (
self.frame
if not self.__terminate.is_set() # check if already terminated
and self.__stream_read.wait(timeout=self.__thread_timeout) # wait for it
else None
)
start(self)
¶
Launches the internal Threaded Frames Extractor daemon.
Returns: A reference to the CamGear class object.
Source code in vidgear/gears/camgear.py
stop(self)
¶
Safely terminates the thread, and release the multi-threaded resources.
Source code in vidgear/gears/camgear.py
def stop(self):
"""
Safely terminates the thread, and release the multi-threaded resources.
"""
self.__logging and logger.debug("Terminating processes.")
# terminate Threaded queue mode separately
self.__threaded_queue_mode = False
# indicate that the thread
# should be terminated immediately
self.__stream_read.set()
self.__terminate.set()
# wait until stream resources are released (producer thread might be still grabbing frame)
if self.__thread is not None:
if not (self.__queue is None):
while not self.__queue.empty():
try:
self.__queue.get_nowait()
except queue.Empty:
continue
self.__queue.task_done()
self.__thread.join()